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Nonequilibrium phase transitions in a model for the origin of life
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Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Caixa Postal 369, 13560-970 Sa˜o Carlos, Sa˜o Paulo, Brazil

~Received 24 April 2001; published 11 January 2002!

The requisites for the persistence of small colonies of self-replicating molecules living in a two-dimensional
lattice are investigated analytically in the infinite diffusion or mean-field limit and through Monte Carlo
simulations in the position-fixed or contact process limit. The molecules are modeled by hypercyclic replicators
A that are capable of replicating via binary fissionA1E→2A with production rates, as well as via catalyti-
cally assisted replication 2A1E→3A with ratec. In addition, a molecule can degrade into its source materials
E with rateg. In the asymptotic regime, the system can be characterized by the presence~active phase! and the
absence~empty phase! of replicators in the lattice. In both diffusion regimes, we find that for small values of
the ratioc/g these phases are separated by a second-order phase transition that is in the universality class of the
directed percolation, while for small values ofs/g the phase transition is of first order. Furthermore, we show
the suitability of the dynamic Monte Carlo method, which is based on the analysis of the spreading behavior
of a few active cells in the center of an otherwise infinite empty lattice, to address the problem of the
emergence of replicators. Rather surprisingly, we show that this method allows an unambiguous identification
of the order of the nonequilibrium phase transition.

DOI: 10.1103/PhysRevE.65.021902 PACS number~s!: 87.10.1e, 87.90.1y, 89.90.1n
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I. INTRODUCTION

The most fundamental event in the history of life w
probably the spontaneous appearance of a molecule cap
of replicating itself~replicator!. Given a possible mechanism
of replication, which in this case is some form of templa
activity, the evolution of such replicators has been ext
sively investigated through the chemical kinetics formali
put forward by Eigen and co-workers in the 1970s@1,2#.
Those studies have raised a series of objections to the
plistic view of the emergence of a complex organism from
collection of competing species of replicators. For instan
the finding that the length of a molecule~polynucleotide! is
limited due to the finite replication accuracy per nucleot
has prompted the proposal of models that incorporated s
sort of cooperation between the replicators, such as the
lecular catalytic feedback networks termed hypercycles@2#.
These models, however, have attracted their own criticis
since, as pointed out by Maynard Smith, giving cataly
support in such molecular networks is in fact an altruis
behavior and so they are extremely vulnerable to the p
ence of parasites, i.e., molecules that do not reciprocate
catalytic support they receive@3#. A possible solution to this
problem is provided by the structured deme formulation
group selection@4#, where it is assumed that the replicato
are spatially localized, say, in rock crevices or water dropl
so that the benefits accrued from cooperation are dire
mostly to the members of the catalytic network@5–7#. Yet
another successful approach to the problem of resista
against parasites is based on a reaction-diffusion sys
where replication and diffusion taking place on an adsorb
surface generate self-organized spiral structures@8,9#. Inter-
estingly, as these spatial structures, which greatly incre
the stability of the hypercycles against parasites, can
viewed as superorganisms that approach is also related t
group selection theory@8#.

Since in the prebiotic or chemical evolution context, na
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ral selection is essentially the dynamics of replicators, it
not surprising that most of the studies in this subject ha
focused almost exclusively on the competition between r
licators, among which the so-called malthusian and hyper
clic replicators are the most important@2,5#. The former cor-
responds to the simplest reproduction process, namely,
binary fission of a parent replicator and is modeled by
chemical reaction

A1E→
s

2A, ~1!

where A is the replicator andE is the source materials
~mononucleotide resources!. It is well known that the con-
centration ofA grows exponentially with the rate constants,
provided that the concentration ofE is kept constant, hence
the name malthusian replicator. To avoid this explos
growth, one usually imposes a constraint on the total conc
tration of replicators that can be implemented in practice
a dilution flux @1#. Alternatively, one can allow the replica
tors to be degraded by hydrolysis into its mononucleot
componentsE according to the reaction

A→
g

E, ~2!

which seems a more natural approach to limit the growth
A.

As best exemplified by sexual reproduction, there are s
ations that cannot be described by Eq.~1! since two replica-
tors are necessary to produce a third one. In this case
corresponding chemical reaction is

2A1E→
c

3A, ~3!

which leads to a hyperbolic growth of the concentration
replicatorA @2#. A hypercyclic replicator is defined as on
©2002 The American Physical Society02-1
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that can replicate itself using both Eqs.~1! and ~3! reaction
schemes. Actually, the term hypercycle derives from the
perimposition of the catalytic replication cycle~3! on the
self-replication cycle~1!. Of course, the limitc50 corre-
sponds to the malthusian replicator whiles50 can be asso
ciated to an obligatory sexual replicator.

In contrast to previous works that have concentrated
the competition between replicators either of the same k
but with different production rates@1,2# or of different kinds
@5#, in this paper we address a more fundamental prob
that has received comparatively little attention, namely,
stability of the different kinds of replicators, viewed here
an active~ordered! phase of the molecular system against
empty~disordered! phase composed of the resource mater
only. This lack of interest was probably due to the fact th
the usual kinetics formalism used to study the dynamics
replicators does not represent the mononucleotide reso
dynamics explicitly~see, however,@10,11#!, thus precluding
the study of the issues addressed in the present contribu
More pointedly, we consider the dynamics of a population
identical hypercyclic replicators on a lattice space both in
deterministic infinite diffusion~mean-field! limit and in the
stochastic position-fixed~contact process! limit where each
replicator on a lattice cell never moves. The last limit
particularly interesting because it allows the connection
tween the replicator models and some standard model
nonequilibrium phase transition in a lattice~e.g., directed
percolation! @12–14#. As a result, the powerful analytica
tools of statistical mechanics can be readily used to adva
our understanding of the evolution of replicators. Of partic
lar relevance is the so-called dynamic Monte Carlo meth
whose idea is to set the system initially in the empty st
with a seed of replicators in the center of the lattice and t
study the subsequent spreading of activity@12–14#. More
importantly, the thorough analysis of both limits exposes
limitations of the widely used deterministic chemical kineti
or mean-field formalism to study the problem of the em
gence of life.

The remainder of the paper is organized as follows.
Sec. II we present the set of rules that govern the evolu
of a population of hypercyclic replicators in a two
dimensional square lattice. The mean-field or infinite dif
sion limit, which models an ideally mixed medium, is stu
ied analytically in Sec. III. The results are summarized in
phase diagram showing the regions of stability of the em
and active regimes in the space of the control parameter
the model. Those regions are delimitated by continuous
well as discontinuous transition lines that join at a tricritic
point. In Sec. IV we study the position-fixed or contact pr
cess limit using mainly the dynamic Monte Carlo meth
that allows the computation of the critical dynamic exp
nents that describe quantitatively the spreading of a van
ingly small population of replicators. Finally, some conclu
ing remarks are presented in Sec. V. In particular,
compare the hypercyclic replicator model with Schlo¨gl’s
models of nonequilibrium phase transition in reactio
diffusion systems@15#.
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II. THE MODEL

It has been suggested that chemical evolution started
a surface-bonded autocatalytic chemical network as there
enormous thermodynamics and kinetics advantages of
face binding reactions, especially in the case of reactions
require unlikely collisions of many reactants@16#. The bind-
ing must be strong enough to keep the reactants on the
face but also flexible enough to allow their slow migratio
on it. Interestingly, if this proposal proves correct it w
probably lead to the replacement of the popular notion o
primitive soup by that of a primitive pizza instead@17#. Ac-
cordingly, we define our replicator model in a two
dimensional space consisting ofL3L cells in a square tor-
oidal lattice. Each cell is either empty or occupied by
replicator and it is assumed that an empty cell contains
source material required to assemble a new replicator.
evolution of the population of replicators is governed by t
following local rules.

~1! A replicator has a probabilityg of decaying; after de-
cay the cell becomes empty. This rule is motivated by
hydrolysis reaction~2!.

~2! A replicator in one of the four first neighbor cells~von
Neumann neighborhood! of an empty cell can replicate into
that cell with probabilitys. This process is referred to a
noncatalized self-replication and is motivated by the react
~1!.

~3! Regardless of the previous rule, a replicator in the v
Neumann neighborhood of an empty cell can replicate i
that cell if there are other replicators in the intersection of
Moore neighborhoods of both cells. The probability of th
type of replication, which is motivated by reaction~3!, is c
for each pair of replicators. We recall that the Moore neig
borhood of a given cell consists of its first and second nea
neighbors, adding up to eight cells.

Hence, in the extreme situation where an empty cel
surrounded by eight replicators, it can become occupied w
probability 4s116c. To carry out the simulations we choos
the parametersc ands such that 4s116c<1. These rules are
applied simultaneously to all cells in the lattice so our mo
can be viewed as a two-dimensional stochastic cellular
tomaton. Actually the model is essentially an adaptation
one-membered hypercycles of the spatial cellular automa
model of multimembered hypercycles proposed by Boerl
and Hogeweg@8#. The dynamics defined by the rules give
above is manifestly irreversible and, in particular, the st
characterized by empty cells only is an absorbing state, i.e
configuration from which the system cannot escape. In
sense, the principle of detailed balance is broken and
active stationary state is in fact in nonequilibrium. Althoug
the more realistic situation is a diffusion-controlled reacti
where each reactant can move randomly on the lattice, in
paper we choose to study in detail the simpler extreme ca
of infinite diffusion ~mean field! and no diffusion~contact
process!. Of course, we hope that features common to b
limits will be present in the finite diffusion situation as we

III. THE MEAN-FIELD LIMIT

The mean-field limit describes exactly an infinite popu
tion of reactants in an ideally mixed medium and so it
2-2
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FIG. 1. Mean-field steady-state concentrati
of active sites as a function of the scaled nonc
alized self-replication ratio for~bottom to top! c̃
50, 1, 2, 3, and 4. The initial concentrations a
~a! r051 and~b! r050.001.
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equivalent to the usual chemical kinetics formulation. N
glecting spatial correlations among cells, i.e., assuming
at any time the molecules are distributed randomly over
lattice cells, it is straightforward to write the evolution equ
tion for the density of replicators or occupied cells at timet,
namely,

r t115r t~12g!14r t~12r t!~s14cr t!. ~4!

We will consider only the stationary solutionsr t115r t5r
of this equation. The absorbing~empty! stater50 is always
a solution, while the nonzero solutions are given by the ro
of the quadratic equation

c̃r22r~ c̃2 s̃!112 s̃50, ~5!

where we have introduced the dimensionless parameter

c̃5
16c

g
and s̃5

4s

g
. ~6!

This equation has real roots provided that the conditionc̃
1 s̃)2>4c̃ is satisfied. In addition we can easily show th
~i! for s̃,1 and c̃. s̃ both roots are positive;~ii ! for s̃,1
andc̃, s̃ both roots are negative; and~iii ! for s̃.1 only one
of the roots is negative. Furthermore, though the solutior
50 exists in the entire plane (c̃,s̃), it is stable only if the
condition

]r t11

]r t
U

r50

512g14s,1, ~7!

which reduces tos̃,1, is satisfied. In the region where th
nonzero roots are physical~i.e., real and positive!, the stable
root is always the largest one. In Fig. 1 we show the stea
state density of replicators for two different choices of init
density. We identify three distinct phases: the absorbing
empty phase~E! associated to the solutionr50; the repli-
cating or active phase~A! associated to the solutionr.0;
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and the phase labeled~EA! where both solutionsr50 and
r.0 are stable. In this phase, the outcome of the dynam
is not determined by the control parameters only but also
the initial abundance of replicators. From this figure it
clear that the system undergoes a continuous nonequilibr
phase transition from phase~E! to phase~A! at s̃5 s̃c51 and
c̃,1. Explicitly, near this transition the density of replicato
can be written as

r'
s̃21

12 c̃
. ~8!

The continuous transition ends at the tricritical points̃t5 c̃t
51 so that forc̃. c̃t the transition between phases~E! and
(EA), that takes place ats̃52Ac̃2 c̃, as well as the transi-
tion between phases~EA! and (A), that occurs ats̃51, are
discontinuous. In particular, the jumps of the densities
replicators are

Dr5121/c̃1/2, c̃.1, ~9!

at the transition~E!-~EA!, and

Dr5121/c̃, c̃.1, ~10!

at the transition~EA!-~A!. These results are convenient
summarized in the phase diagram shown in Fig. 2. It is
teresting to note that settings̃5 c̃ we find, close to the tri-
critical point,

r'~ s̃21!1/2, ~11!

so that the tricritical point is not in the same universal
class as the transition observed in the absence of catalytic
assisted replication.

The interpretation of our results within the prebiotic ev
lution context leads to the conclusion that for finite values
c̃ an obligatory sexual replicator cannot emerge sponta
ously ~i.e., appear at vanishingly small concentrations!. For
instance, fors̃50, the minimal initial density of replicators
2-3
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CLAUDIA P. FERREIRA AND J. F. FONTANARI PHYSICAL REVIEW E65 021902
necessary to engender a prosperous population isr51/2 at
the transition pointc̃54, vanishing as 1/c̃ for large c̃. Actu-
ally, an initial colony of replicators is certain to grow from
vanishingly small concentrations provided thats̃.1. These
conclusions, however, must be taken with caution since
the deterministic limit a vanishingly small concentratio
means an infinite population of replicators, while one wou
expect the first replicators to show up as a single or a
copies at most. Of course, a proper understanding of
emergence phenomenon calls for a stochastic appro
which is the subject of the following section.

IV. THE POSITION-FIXED LIMIT

The primary aim of this section is to determine what fe
tures of the rich phase diagram obtained in the mean-fi
limit show up also in the opposite limit, where the replicato
are fixed on the lattice cells. This is a rather challeng
enterprise as at least in the case of equilibrium phase tra
tions, there is no totally unambiguous way by which one c
detect the order of the transition through the analysis of fin
systems alone@18#. Nevertheless, we tackle this problem u
ing both a steady-state approach for finite lattices and
dynamical Monte Carlo method for lattices of effectively i
finite size.

First, we measure the densityr of replicators in the steady
state. Our results for two system sizes~L5100 andL5200!
are shown in Figs. 3 and 4. For each set of the control
rameters we made runs of 105 generations, neglecting th
first 23104 generations and recordingr at steps of 200 gen
erations. A generation corresponds to the simultaneous
date of all lattice cells. Each data point is the arithme
mean of these recorded data. Provided that the populatio
not extinct, the results are independent of the choice of
initial configuration. In particular, we have made runs sta
ing from all cells occupied or from a seed of only four clu
tered occupied cells. Furthermore, as in the mean-field l
we have verified that our results depend only on the ra

FIG. 2. Mean-field phase diagram in the plane (c̃,s̃) showing
the regions of stability of the different steady-state solutions. T
continuous transition ending at the tricritical point~TCP! is repre-
sented as a solid line and the broken lines indicate discontinu
phase transitions.
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s/g and c/g so throughout the remaining of this paper t
value of the decay constant is held fixed atg50.05. These
results clearly indicate the existence of a phase transi
separating the active (r.0) and empty (r50) phases of the
model. Assuming that in the neighborhood of the transit
points the density of replicators goes to zero asr;( s̃
2 s̃c)

b and using the least-square method we can estim
both the critical replication rates̃c and the critical exponen
b.0. These estimates are presented in Table I and the q
ity of the fitting can be appreciated from Fig. 4. The statis
cal errors are of order of 1023 but the systematic errors
which are due mainly to the difficulty to carry out long run
very close to the transition point, are probably much larg
We note that our estimates ofb for small values ofc̃ indicate
that in this regime the replicator model belongs to the
called (211) directed-percolation universality class fo
which b50.5960.02 @19#. It should be pointed out that in

e

us

FIG. 3. Average density of replicatorsr as a function ofs̃ for
~left to right! c̃55.70, 5.13, 3.94, 2.58, 0.99, and 0. The lattice siz
areL5100(3) and 200~s!.

FIG. 4. Logarithm plot of the average densityr as a function of
( s̃2 s̃c) for ~top to bottom! c̃55.70, 5.13, 3.94, 2.58, 0.99, and 0
The values ofs̃c5 s̃c(c) for the different choices ofc̃ are given in
Table I and the straight lines are the numerical fitting obtained w
those data. Only the data forL5200 are presented.
2-4
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finite systems the active regime is a meta stable one as t
is always a finite probability that the colony becomes exti
due to fluctuations in the stochastic dynamics. Since this
tinction probability increases towards 1 as the critical poin
approached, it is very difficult to obtain reliable estimates
s̃c and b by means of numerical simulations in the stead
state regime. Of course we are aware that if the transi
happens to become discontinuous at some value ofc̃.0 then
the assumption of a power-law singularity at the transit
point breaks down~actually b50 in this case!. In fact, the
~anomalous! continuous decrease ofb as c̃ increases~see
Table I! is an indication that this might be the case. O
careless use of the power-law assumption is intentional
aims to illustrate the difficulty of detecting the order of
phase transition using results of steady-state simulations
abrupt variation ofr at criticality observed in Fig. 3 for
certain values ofc̃, which might indicate the occurrence of
first-order irreversible transition, can be explained as a c
tinuous transition with a small exponentb as well.

We now turn to the analysis of the spreading behavior
a small colony of replicators settled initially in the center
an otherwise empty lattice of infinite size. More pointed
the initial colony is composed of four replicators located
the von Neumann neighborhood of the central empty c
Finite-size effects are absent because the lattice size is t
large enough so that during the time we follow the evolut
of the colony the replicators can never reach the lat
boundaries. This of course sets an upper limit to the num
of generations we can follow the colony and so, in particu
we let the population evolve up to typicallyt5104. As usual,
we concentrate on the time dependence of the following
quantities@12#: ~i! the average number of replicatorsn(t);
~ii ! the survival probability of the colonyP(t); and ~iii ! the
average mean-square distance over which the replica
have spreadR2(t). For each timet we carry out M52
3105 independent runs, all starting with the same init
colony. HenceP(t) is simply the fraction of runs for which
there is at least one replicator in the lattice at timet. Since
n(t) is an average taken over all runs including those t
have already been extinct at generationt, the average numbe
of replicators per surviving run is given by the ratioN(t)
5n(t)/P(t). Furthermore, noting thatR2(t) is averaged
only over the surviving runs, we can define the fractal
mensiondf of the surviving colonies of replicators at a give
time t asN;Rdf .

At the transition points we expect that the measured qu
tities obey the following scaling laws@12#

TABLE I. Estimates of the critical points̃c and the critical ex-
ponentb assuming the power-law singularityr;( s̃2 s̃c)

b.

c̃ s̃c b

0 1.625 0.61
0.992 1.400 0.60
2.576 1.004 0.47
3.936 0.608 0.30
5.128 0.210 0.18
5.7008 0.004 0.12
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n~ t !;th, ~12!

P~ t !;t2d, ~13!

R2~ t !;tz, ~14!

whered, h, andz are dynamic exponents that are related w
the fractal dimension of the clusters of replicators throu
the equation

df52
h1d

z
. ~15!

In principle, these scaling laws are valid for continuous
well as discontinuous phase transitions, though the sca
relations between the exponents, such as the ‘‘hyperscal
relation @14#

1
2 dz2h52d, ~16!

where d is the lattice dimension, hold only in the case
continuous transitions.

In Figs. 5 and 6, we present log-log plots ofn(t) and
P(t), respectively, as functions oft in the vicinity of the
critical point for c̃50. The dependence ofR2(t) on t is not
shown since, near criticality, the curves for different valu
of s̃ are clustered together and do not reveal any qualitativ
relevant information on the colony evolution. The asympto
straight lines observed in these figures are the signatur
critical behavior while upward and downward deviations
dicate supercritical and subcritical behaviors, respectively
precise estimate for the critical exponents is obtained by c
sidering the local slopes of the curves shown in the previ
figures. For instance, the local sloped(t) is defined by
@14,20#

2d~ t !5
ln@P~ t !/P~ t/5!#

ln 5
, ~17!

which for larget behaves as

FIG. 5. The log-log plot ofn(t) as a function oft for c̃50 and
~top to bottom! s̃51.80, 1.632, 1.630, 1.629, 1.628, 1.627, 1.62
and 1.52.
2-5
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d~ t !;d1
a

t
, ~18!

wherea is a constant. Analogous expressions hold forh(t)
andz(t). Hence, plots of the local slopes as functions oft
allow the calculation of the critical exponents. Using th
procedure we finds̃c51.62860.001, which yields the expo
nents h50.2360.01, d50.4560.01, and z51.1360.01.
The error ins̃c is estimated by determining two values ofs̃
as close as possible to the critical point for which upwa
and downward deviations can be observed, while the er
in the critical exponents are, as usual, the statistical er
obtained by fitting the local slopes by straight lines in t
large t regime. Our exponents are in good agreement w
those of the (211) directed percolation@14# and satisfy very
well the hyperscaling relation~16! thus indicating that the
transition in the limitc̃50 is continuous, as expected.

The results of the spreading analysis for the other extre
case,s̃50, which models a population of obligatory sexu
replicators are shown in Figs. 7 and 8. Although the dep

FIG. 6. Same as Fig. 5 but forP(t).

FIG. 7. The log-log plot ofn(t) as a function oft for s̃50 and
~top to bottom! c̃55.760, 5.712, 5.709, 5.704, 5.702, 5.701, 5.6
and 5.664.
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dence of lnP(t) on t is similar to that observed in the prev
ous case, the behavior pattern of lnn(t) ~see Fig. 7! is rather
different: in the supercritical regime~i.e., c̃. c̃c! n(t) first
increases reaching a maximum, then decreases reach
minimum, and finally starts to increase monotonically aga
This pattern is illustrated better in Fig. 9, which shows t
spreading results fors̃50.2. Analysis of these figures, whic
exceptionally show the colony evolution up to 23104 gen-
erations, suggests that a flat line separates the supercr
and the subcritical regimes implying thus the vanishing
the exponenth at the transition point. Furthermore, the qua
tatively distinct behavior patterns of lnn(t) illustrated in Figs.
5, 7, and 9 can be used to identify unambiguously the or
of the nonequilibrium phase transition and hence to estim
the location of the tricritical point. To appreciate how th
time dependence of lnn(t) in the supercritical regime
changes continuously from the simple monotonic incre
for c̃50 to the complicated behavior described above fos̃
50 we present in Figs. 10 and 11 log-log plots ofn(t) as a
function of t for s̃50.6 and s̃51.0, respectively. In fact,
analysis of Figs. 7–11 suggests that the turning point

,

FIG. 8. Same as Fig. 7 but forP(t).

FIG. 9. The log-log plot ofn(t) as a function oft for s̃50.2 and
~top to bottom! c̃55.20, 5.168, 5.160, 5.152, 5.144, 5.136, a
5.120.
2-6
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tween those distinct behavior patterns occurs when the m
mum and the minimum ofn(t) coincide, i.e., the critical
curve lnn(t) vs lnt has an inflection point~see Fig. 10!. The
values ofs̃ and the correspondingc̃c at which this behavior
occurs are then identified as the coordinates of the tricrit
point. Applying this procedure we finds̃t50.6060.04 and
c̃t54.0060.20.

The transition points and the dynamic exponents obtai
via the scaling laws~12!–~14! and via the analysis of the
local slopes are summarized in Table II. The errors in
estimates of the transition points are calculated as descr
before for the casec̃50. Except for that case, we refrai
from presenting the~statistical! errors in the exponents sinc
the systematic errors are unusually large, due probably to
crossover behavior among~at least! three different universal-
ity classes. For instance, in the vicinity of the transition po
for s̃50.6, analysis of the local sloped(t) up to t5500
indicates a clear tendency to the asymptotic valued'1
while for t.500 the tendency suddenly changes towards
asymptotic valued'0.6. A similar phenomenon occurs fo
s̃51.0 also: the initial tendency is towardsd'0.6 and then
changes towardsd'0.45 for larger times. As a result th
estimate of the exponents becomes strongly dependent o
precise location of the transition points, which requires ev

FIG. 10. The log-log plot ofn(t) as a function oft for s̃50.6
and ~top to bottom! c̃54.080, 4.000, 3.968, 3.960, 3.952, 3.94
3.936, 3.928, 3.920, 3.912, and 3.840.
02190
xi-

al

d

e
ed

he

t

e

the
n

better statistics as well as much longer runs. We leave
interesting research line that includes, for instance, the id
tification of the universality class of the tricritical point to
future, more technical contribution.

The evidences in support of our claim that, similarly
the mean-field limit, in the position-fixed limit the nonequ
librium phase transition between the empty and active pha
is discontinuous for smalls̃ and so there is a tricritical poin
in the phase diagram of the model are threefold: First,
vanishing of the exponenth in this range signalizes a distinc
asymptotic behavior of the average number of replicat
n(t). Second, the hyperscaling relation~16! is clearly vio-
lated for smalls̃ while it is satisfied in the regime where w
expect the transition to be a second-order transition. Th
using Eq.~15! and the data of Table II we finddf'd52 in
the region of smalls̃ indicating that the clusters of replicator
are not fractal objects, in contrast to the clusters observe
the vicinity of a second-order transition~we find, for in-
stance,df'1.21 for c̃50!. This point is illustrated in Figs.
12 and 13 that show snapshots of typical colonies att5104

for the two extreme cases. In both figures the relative d
tances to the critical points are the same. The reason for
colonies of obligatory sexual replicators to be much den
than those of malthusian replicators is that the number

FIG. 11. The log-log plot ofn(t) as a function oft for s̃51.0
and ~top to bottom! c̃52.720, 2.600, 2.592, 2.584, 2.576, 2.56
2.552, and 2.544.
sition
TABLE II. Critical dynamic exponents calculated from the slopes of the straight lines at the tran
pointscc(s).

s̃ c̃c h d z

0 5.70460.005 20.03 0.96 0.98
0.2 5.15260.008 20.004 0.80 1.03
0.6 3.95260.008 0.14 0.63 1.08
0.8 3.29660.008 0.22 0.54 1.11
1.0 2.58460.008 0.20 0.51 1.11
1.2 1.83260.008 0.25 0.49 1.13
1.4 1.00860.008 0.23 0.47 1.11

1.62860.001 0 0.2360.01 0.4560.01 1.1360.01
2-7
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replicators per surviving colony@N(t);th1d# increases
roughly ast for the former and ast0.7 for the latter. In addi-
tion, the average square distance over which the in
colony has spread from the center of the lattice at timet is
roughly of the same order in both extremes as indicated
the values of the exponentz.

Finally, in Fig. 14 we present the phase diagram for
position-fixed limit. In this case there are only two phas
namely, the empty phase~E! characterized by a vanishin
probability of survivalP`[ lim t→` P(t)50 and the phase
~EA! where the active and empty states can occur with pr
abilities P` and 12P` ~see Figs. 6 and 8!, respectively. We
note that the population size is effectively unlimited so th
extinction is not certain to occur as in the steady-state an
sis of finite systems. It is worth emphasizing that for fin
production rates one hasP`,1 and so there is always
nonvanishing probability of extinction.~Actually, P` de-

FIG. 12. Snapshot of the lattice configuration att5104 showing
the colony of replicators~dots!. The parameters arec̃50 and s̃
51.69. The initial colony of four replicators was placed in t
middle of the 2003200 lattice.

FIG. 13. Same as Fig. 12 but fors̃50 andc̃55.92.
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pends on the number and location of the replicators in
initial colony, but the conditions we have chosen are
most relevant for the emergence of life problem.! This result
contrasts to our findings in the mean-field limit that the fix
point associated to the empty phase becomes unstables̃
.1 so that even starting with a vanishingly small concent
tion of replicators the population never dies out. As me
tioned before, the reason for this discrepancy is not the
ference in mobility of the replicators but the fact that t
mean-field analysis actually considers an infinite populat
and hence it fails to take into account the stochastic fluct
tions that could drive a small population to extinction.

For the sake of completeness, we should mention that
have also carried out a similar analysis for one-dimensio
lattices~chains!. While the results for the mean-field limit ar
of course the same~provided we properly redefine the d
mensionless parametersc̃ and s̃!, the fixed-point limit has
some distinct features that are worth mentioning. In parti
lar, we find no evidence for a first-order transition; instea
we find that in both extremesc̃50 ands̃50 the empty and
active phases are separated by a second-order phase t
tion that belongs to the (111) directed-percolation univer
sality class@12#. Interestingly, in one dimension the stead
state analysis of finite chains is rendered practically use
by the very pronounced finite-size effects, which are pro
ably due to the proximity to the lower critical dimension
the model.

V. CONCLUSION

In this paper we have focused on the prior step in
evolution of life: What are the necessary conditions for sm
colonies of molecules capable of making copies of the
selves via some template mechanism to persist? This
must be passed before one can consider issues such a
outcome of the competition between the replicators and t

FIG. 14. Phase diagram in the plane (c̃,s̃) for the position-fixed
limit. The continuous and discontinuous transition points are rep
sented by the symbolss andn, respectively. The error bars repre
sent the uncertainty in the location of the tricritical point~TCP!,
while for the other data points the error bars are smaller than
symbol sizes. For the sake of comparison the mean-field phase
gram ~solid and broken lines! is also presented.
2-8
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defective copies@1,23# or between different kinds of replica
tors @2,5#. As a model of replicator we have considered t
well-established hypercyclic replicator~one-membered hy
percycle! that incorporates two independent mechanisms
replication, namely, the direct template replication react
~1! and the catalytically assisted template replication reac
~3!, whose rates are proportional to the parameterss and c,
respectively. Furthermore, motivated by the modern theo
for the evolution of life that suggest a scenario of diffusio
controlled chemical reactions taking place on adsorbing
faces~probably pyrite! where each reactant can move ra
domly on the surface@16,17#, we have considered a two
dimensional lattice model where each reactant can occ
one of the lattice cells.

Since the diffusion process of reactants complicates c
siderably the analysis, we have focused on the two extre
situations: the infinite diffusion or mean-field limit and th
position-fixed or contact process limit. The expectation
that features common to both limits should also be presen
the more realistic, intermediate situations. In both cases
found rich phase diagrams showing the regions in the pl
~c,s! where the replicators persist~active phase! and die out
~empty phase!: these regions are separated by second-o
nonequilibrium phase transitions that turn into first-ord
transitions at tricritical points. The dynamic Monte Car
method has proven very well suited to our investigation
the position-fixed limit not only because the method is ba
on the analysis of the spreading behavior of a small col
of active cells, which is exactly the problem we are int
ested in, but because, rather surprisingly, it allows an un
biguous identification of the order of the nonequilibriu
phase transition. In addition, we show that the continu
transition is in the universality class of the (211) directed
percolation.

Some remarks on the apparent similarity betwe
Schlögl’s first and second models and the replicator mod
studied in this paper are in order@15#. In fact, irreversible
versions of Schlo¨gl’s first and second models are recover
when the reactantE is eliminated from reactions~1! and~3!,
respectively, so that the existence of an empty cell contain
source materials is not required for replication. Interesting
this difference is not important in the case of malthus
replicators (c50) since this model has the same critical b
havior as Schlo¨gl’s first model, namely, a second-order pha
transition that is in the same universality class of thed
11) directed percolation~the mean-field limit is obtained
for d>4! @21#. The comparison between Schlo¨gl’s second
model and obligatory sexual replicators (s50) is more in-
volved. On the one hand, the mean-field analysis of Schlo¨gl’s
second model predicts a first-order phase transition@15# but
Monte Carlo calculations indicate that the transition ford
,4 is a second-order transition that is actually in the sa
universality class as the transition in Schlo¨gl’s first model
@22#. On the other hand, our results for the cases50 show
that a directed-percolation-like, second-order phase tra
tion takes place ford51 only, the transition being discon
02190
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tinuous for higher dimensions (d>2). We should mention,
however, that the Monte Carlo implementation of Schlo¨gl’s
second model actually allows the diffusion of reactants
neighboring cells and, in addition, allows a cell to shel
more than one reactant@22# so that a comparison with th
position-fixed limit may not be appropriate. In any event,
is our opinion that the hypercyclic replicator model shou
not be viewed as a mere variant of Schlo¨gl’s models; rather it
is a well-established model of chemical evolution@1,2,5#
that, as far as we know, has not been studied beyond
mean-field limit.

Although the simple replicator model considered in th
paper turned out to be a quite exciting model of nonequi
rium phase transitions, we should not lose sight of the or
nal purpose of this work and so, at this stage, it is import
to highlight the relevance of our results to the origin of li
issue. In fact, the mere existence of a phase transition
tween the empty and the active regimes poses a difficult
our scenario of the emergence of life since the scaled p
duction rates̃ of the spontaneously created self-replicati
molecule must be larger than some threshold value alread
the outset. Though increasing the mobility of the reacta
decreases this threshold somewhat, that scenario woul
more plausible if replicators with vanishingly small produ
tion rates could also thrive. The situation becomes e
worse in the case of first-order transitions: in the determ
istic mean-field limit the initial abundance of the spontan
ously created replicators should be large as well, while in
stochastic position-fixed limit the probability of survival i
the vicinity of the transition point is some orders of magn
tude smaller than in the case of a second-order transition~see
Figs. 6 and 8!. Furthermore, our results indicate that som
important conclusions, such as the certainty of survival
s̃.1 or the role played by the initial concentration of rep
cators near a discontinuous transition, are actually artifact
the deterministic formalism commonly used to study chem
cal evolution.

In summary, our results show the necessity of add
some elements to the standard scenario for the emergen
life whose effect would be to avoid the phase transitio
allowing thus inefficient replicators to thrive at this first sta
of life. Only then one can invoke natural selection and i
perfect replication to boost the replication rates. In additi
our results point to the inadequacy of the deterministic me
field or chemical kinetics formulation to address the origin
life issue and suggest as an alternative stochastic formula
the dynamic Monte Carlo method that has been extensiv
used in the physics literature to study nonequilibrium ph
transitions.
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